- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Nittrouer, J A (2)
-
Abolfazli, E (1)
-
Dee, S G (1)
-
Dunne, K B (1)
-
Dunne, K_B J (1)
-
Hoitink, A. J. (1)
-
Huismans, Y. (1)
-
Langendoen, E. J. (1)
-
Maren, D. S. (1)
-
Muñoz, S E (1)
-
Nittrouer, J. A. (1)
-
Osborn, R (1)
-
Passalacqua, P. (1)
-
Reinders, J (1)
-
Shaw, J. B. (1)
-
Strom, K B (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& *Soto, E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The riverine transport and deposition of mud is the primary agent of landscape construction and evolution in many fluvial and coastal environments. Previous efforts exploring this process have raised uncertainty regarding the effects of hydrodynamic and chemical controls on the transport and deposition of mud, and thus the constructions of muddy coastal and upstream environments. As such, direct measurements are necessary to constrain the deposition of mud by river systems. Here, we combine laboratory evidence and a field investigation in the Mississippi River delta to explore the controls on the riverine transport and deposition of mud. We show that the flocculation of mud, with floc diameters greater than 10 μm, in freshwater is a ubiquitous phenomenon, causing the sedimentation of mud to be driven by changes in local hydrodynamics, and thus providing an explanation for how river systems construct landscapes through the deposition of mud in both coastal and upstream environments.more » « less
-
Dunne, K B; Dee, S G; Reinders, J; Muñoz, S E; Nittrouer, J A (, Environmental Research Communications)Abstract The Mississippi River is the largest commercial waterway in North America and one of the most heavily engineered rivers in the world. Future alteration of the river’s hydrology by climate change may increase the vulnerability of flood mitigation and navigation infrastructure implemented to constrain 20 th century discharge conditions. Here, we evaluate changes in Lower Mississippi River basin hydroclimate and discharge from 1920–2100 C.E. by integrating river gauge observations and climate model ensemble simulations from CESM1.2 under multiple greenhouse gas emissions scenarios. We show that the Lower Mississippi River’s flood regime is highly sensitive to emissions scenario; specifically, the return period of flood discharge exceeding existing flood mitigation infrastructure decreases from approximately 1000 years to 31 years by the year 2100 under RCP8.5 forcing, primarily driven by increasing precipitation and runoff within the basin. Without aggressive reductions in greenhouse gas emissions, flood mitigation infrastructure may require substantial retrofitting to avoid disruptions to industries and communities along the Lower Mississippi River.more » « less
-
Hoitink, A. J.; Nittrouer, J. A.; Passalacqua, P.; Shaw, J. B.; Langendoen, E. J.; Huismans, Y.; Maren, D. S. (, Journal of Geophysical Research: Earth Surface)
An official website of the United States government
